III B. TECH I SEMESTER REGULAR EXAMINATIONS, NOVEMBER - 2022 MACHINE LEARNING (CSO)

Time: 3 Hours
Max. Marks: 70
Note : Answer ONE question from each unit ($\mathbf{5} \times \mathbf{1 4}=\mathbf{7 0}$ Marks)

UNIT-I

1. a) Differentiate supervised learning and unsupervised learning. [7M]
b) Describe the applications of machine learning in any three [7M] different domains.
(OR)
2. a) Describe the perspectives and issues in Machine Learning.
b) Explain about Grouping and Grading models.

UNIT-II
3. a) Write ID3 decision tree algorithm and explain with suitable [7M] example.
b) Discuss different issues in decision tree learning. How are they overcome.
(OR)
4. a) Explain linear regression model. What are the drawbacks of using linear regression model.
b) What is Sigmoid function? Give an example of logistic regression application in practice.

UNIT-III

5. a) Naive Bayes classification could depend on Maximum-aPosteriori or Maximum-Liklihood criteria. What is the difference between the two.
b) Describe K- nearest neighbor algorithm. Elaborate why it is called instance based learning.
(OR)
6. a) What is the goal of support vector machine? How to compute the margin.
b) Explain the single perceptron with its learning algorithm.

UNIT-IV
7. a) With an example discuss dendogram representation for [7M] hierarchical clustering of data objects.
b) Use K Means clustering to cluster the following data into two groups. Assume cluster centroid are $\mathrm{m} 1=2$ and $\mathrm{m} 2=4$. The distance function used is Euclidean distance. $\{2,4,10,12,3$, 20, 30, 11, 25 \}.
(OR)
8. a) Write down the major differences between K-means clustering [7M] and hierarchical clustering.
b) Demonstrate k-medoids partitioning algorithm with example. UNIT-V
9. a) How stacking works?
b) What are the similarities between bagging and boosting.
(OR)
10. a) Describe the random forest algorithm to improve classifier [7M] accuracy.
b) Discuss the advantageous and disadvantageous of boosting [7M] model.

